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Abstract. The link between the shape of a two-dimensional, uniform vortex and self-induced velocities on its
boundary is investigated through a contour-dynamics approach. The tangent derivative of the velocity along the
boundary is written in a complex form, which depends on the analytic continuation of the tangent unit vector
outside the vortex boundary. In this way, a classical analysis in terms of Schwarz’s function of the boundary,
due to Saffman, is extended to vortices of arbitrary shape. Time evolution of intrinsic quantities (tangent unit
vector, curvature and Fourier’s coefficients for the vortex shape) is also analyzed, showing that it depends on
tangent derivatives of the velocities, only. Furthermore, a spectral method is proposed, aimed at investigating the
dynamics of nearly-circular vortices in an inviscid, isochoric fluid. Comparisons with direct numerical simulations
are also established.
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1. Introduction

The study of the relation between the shape of a two-dimensional, uniform vortex and the
corresponding self-induced velocities is a quite old issue of vortex dynamics. Early works
date back to Kirchhoff, who found that the boundary of an elliptical vortex rotates without
changing its shape [1, Art. 159].

During the eighties, this rather relevant finding led to two slightly different models for the
vortex dynamics, namely the moment model [2] and the elliptical model [3], the latter appear-
ing as a refinement of the former. Both models assume the vortices to be of elliptical shape,
in order to use the above Kirchhoff solution for self-induced contributions. They possess the
key-mechanism of merging, mimicking Euler’s equations (see [4] and [5], for symmetric and
asymmetric interactions, respectively). This is the main reason for their popularity.

In the same years, the contour dynamics approach (see [6], for a comprehensive discussion)
became a rather powerful tool for the numerical integration of the motion of uniform vortices
in an inviscid, isochoric fluid. In this approach [7], the Biot-Savart integral on the inside of
the vortex is reduced to a line integral along the vortex boundary, by using Green’s theorem.
So, the velocity u (bold symbols indicate vectors, or complex numbers) induced by a uniform
vortex P on a point x = x1 + ix2 (i is the imaginary unit) is written as:

u(x) = −
∫
∂P

dy G(x − y), (1)

for a unitary vorticity level. In Equation (1), ∂P is the vortex boundary and G(x) = 1/(2π)

log |x| (for more details, see Section 2). One of the most appealing properties of contour
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dynamics is its capability to follows small-scale motions, through a redistribution of the nodes
or also a surgery of excessively thin filaments.

Some years later, contour dynamics was reconsidered from a more theoretical point of
view, leading to the conformal dynamics [8] for vortices not too deformed with respect to
a given (elliptical) shape. The bases of such an approach are due to Jimenez [9] and to
Saffman [10, Section 9.2], who used the Schwarz function � of the contour ∂P (if x lies
on ∂P : �(x) = x, where an overbar means complex conjugate) and a conformal mapping, in
order to write suitable evolution equations. Recently, these ideas have been also successfully
reconsidered by Crowdy, who found classes of steady multipolar vortical structures with
line vortices inside [11] and outside [12] a central, uniform one. Such classes of stationary
solutions of Euler’s equations appear to be closely related to multipolar equilibria observed in
high Reynolds number flows.

In the present paper, an attempt to make a contribution to the understanding of the re-
lation between shape and self-induced velocities is performed. The analysis is based on a
rather unusual way of considering the velocity (1), which works when ∂P is a sufficiently
smooth curve. As a matter of fact, by considering the velocity (1) along the vortex boundary,
it is crucially observed (see Section 5) that its tangent derivative depends on the analytic
continuation of the function φ = 1/τ 2 outside the boundary itself, τ being the tangent unit
vector. In the light of Saffman’s analysis, such a result is not surprising: φ is just ∂x�, i.e., the
tangent derivative of the Schwarz function. Nevertheless, the obtained relation between vortex
geometry and kinematics turns out to be very useful. The present approach can be adopted for
an arbitrary vortex shape, overcoming the need of a conformal mapping [10]. Furthermore, for
a particular kind of uniform vortices (considered also in Saffman’s book) which are “nearly
circular” (see Section 5, for a quantitative definition), the present approach enables us to write
the self-induced boundary velocities in terms of the vorticity moments.

Additional motivations to investigate the tangent derivative of the velocity (1) stems from
the time behaviour of local and global quantities related to ∂P . With regard to the former,
in Section 3 the tangent unit vector and the curvature are examined, by showing that their
time derivative depends on tangent velocity derivatives only. Concerning the description of
the vortex as a whole, the shape of P is represented in terms of the Fourier series of the
position x(s) on the vortex boundary, considered as a function of the curvilinear abscissa s. In
Section 4, the time derivative of the related Fourier coefficients is considered. It is found that
it depends on the tangent derivative of the velocity only.

The present approach allows also to evaluate analytically the tangent derivative of the
velocity, as shown in Section 6 for Kirchhoff’s vortex and for a simple class of multipolar
vortices. Finally, among many others possible applications (e.g., the extension of the moment
model to non-elliptical vortices), a spectral approach to the dynamics of “nearly circular”
vortices is developed and tested in Section 7.

2. The contour-dynamics technique

In the present paper, the relation between shape of a uniform vortex P (P being a bounded
domain, having smooth and finite-length boundary, patch hereafter) and self-induced velocit-
ies along its boundary is investigated by using the velocity (1). Intermediate steps are verified
through a contour-dynamics algorithm, which is briefly described below.
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Figure 1. In (a), three times (0: dotted line, 5: dashed and 10: solid) of a contour dynamics simulation for a patch
of kind (28), with n = 2 and ε = 0·5, are shown. The crosses indicate the corresponding positions of the origin of
the arc lengths. The time step of integration is 0·01, with a fourth order Runge-Kutta method, while N = 200 is
assumed. In (b) the corresponding relative errors (A − A0)/A0 (dashed line) and (I − I0)/I0 (solid) are drawn.
Note the abrupt growth of such errors at the beginning of the filamentation.

The vortex boundary at time t is represented in terms of the function x = x(σ, t), where σ

is a parameter (not having, in general, a Lagrangian meaning) belonging to the interval [0, �).
By considering the velocity (1) along ∂P , the integro-differential problem for the patch motion
follows:

 ẋ(σ, t) = −
∫ �

0
dσ ′ ∂σ ′x(σ ′, t) G[x(σ, t) − x(σ ′, t)]

x(σ, 0) given,

where the dot indicates the time derivative. Recent theoretical results (see [13, Section 8.3]
for a comprehensive discussion), about existence, uniqueness and global regularity of the
solution of the above problem, prove that an initially smooth vortex boundary stays smooth
for all times.

The form (1) of the Biot-Savart law is especially useful from a numerical point of view:
the motion of the patch P is approximated by following N points xq , for q = 1, . . ., N , on
∂P and by using interpolation formulae to rebuild each arc. For example, the p-th arc at the
time t , i.e., the portion of ∂P (t) between xp(t) and xp+1(t), is approximated in terms of the
function x = �p(σ, t) for σ ∈ (0, h), h being a positive number, with �p(0, t) = xp(t)

and �p(h, t) = xp+1(t). In the present paper, a cubic interpolation law �p(σ, t) = a(t) σ 3 +
b(t) σ 2+c(t) σ +d(t) is employed, where the complex coefficients a, b, c and d are calculated
by imposing also the continuity of the tangent vector, evaluated with centered fourth order
derivatives, in xp and in xp+1. This explicit procedure appears to be the simplest one, among
the ones giving a continuous tangent vector on ∂P . The vortex motion is then approximated
through a numerical integration of the system:


ẋq(t) � −

N∑
p=1

∫ h

0
dσ ∂σ�p(σ, t) G[xq(t) − �p(σ, t)]

xq(0) given,

(2)
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for q = 1, . . ., N . The number N of the points may be dynamically adjusted during a
calculation and excessively thin filaments may be cut. For the sake of simplicity, none of
the aforementioned procedures is adopted.

The velocity of the q-th point in Equation (2) is the sum of N terms, which are evaluated
analytically. According to Pullin [14], in order to calculate the velocity induced in a point x

by the p-th arc, the following relation is employed:
∫ h

0
dσ ∂σ�p log |�p − x|2 = (xp+1 − x) log |xp+1 − x|2 − (xp − x) log |xp − x|2 +

− (xp+1 − xp) −
∫ h

0
dσ ∂σ�p

�p − x

�p − x
.

The last integral is evaluated exactly, by calculating the three roots of the algebraic equation
in σ : �p(σ ) = x.

Finally, in order to check the accuracy of the calculation, two first integrals of the motion
are computed during the time integration. They are the area A of the patch and its second
order moment I :

I =
∫
P
dA(x) |x|2.

The first integrals are analytically evaluated on the curve approximating ∂P and the differ-
ences between their initial values (A0, I0) and current ones are assumed as global measures of
the accuracy of the numerical integration. As a sample case, in Figure 1a three successive vor-
tex configurations are shown, while in Figure 1b the relative errors on area and second-order
moment of the patch are drawn vs. time.

3. Intrinsic equations for the patch boundary

The tangent derivatives of the velocity on the patch boundary play an essential role in the
intrinsic dynamics of that curve, i.e., in time evolution of tangent unit vector (τ ) and curvature
(K) measured on material particles lying on ∂P . As a matter of fact, as shown below, the
evolution equations for τ and K can be written in terms of the first and second tangent
derivatives of u.

Among the possible representations of ∂P (t) at a fixed time t , two are particularly useful:
the Lagrangian one, in terms of the initial arc length s0: X = X(s0; t), and the Eulerian
representation, in terms of the actual arc length s: x = x(s; t). The two descriptions are
connected by the Lagrangian equation relating s and s0, s = s(s0, t). By using the Lagrangian
representation in order to specify the tangent unit vector as τ = ∂sx = ∂s0X/∂s0s, its time
derivative can be written as follows:

τ̇ = ∂s0∂tX

∂s0s
− τ

∂s0 ṡ

∂s0s
= ∂su − τ ∂sṡ. (3)

From the relations τ̇ · τ = 0 and (3), by considering the complex function of s: τ 2∂xu =
R1 + i I1, one obtains:

∂sṡ = τ · ∂su = R1, (4)
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Figure 2. For the flow in Figure 1 at time 5, the normal component of τ̇ (solid line) and the imaginary part I1
of τ2∂xu (symbols) are drawn vs. s in (a), while K̇ (solid line) and the quantity −(3R1K + I2) (symbols) are
shown in (b).

which implies also τ̇ = ν · ∂su ν, ν being the outward normal unit vector along the patch
boundary. It follows:

τ̇ · ν = I1, (5)

leading also to τ̇ = I1 ν and ν̇ = −I1 τ . Equation (5) is the first intrinsic equation of the
dynamics of the patch boundary.

The second intrinsic equation is obtained by performing the time derivative of the relation
K = τ · ∂sν = −ν · ∂s0τ/∂s0s:

K̇ = −ν̇ · ∂sτ − ν ·( ∂s0 τ̇

∂s0s
− ∂sτ

∂s0 ṡ

∂s0s

) = −∂sI1 − K τ · ∂su,

where τ · ∂su = R1. By considering the quantity τ 3 ∂2
xxu = R2 + i I2, the above equation is

rewritten as:

K̇ + 3 R1 K = −I2, (6)

which is the intrinsic equation for the curvature.
As an example, left and right sides in Equations (5, 6) are drawn vs. s in Figure 2, through

contour dynamics simulations (derivatives in t and in σ are approximated via fourth-order
centered formulae): the intrinsic equations appear to be verified, at least in the limits of the
numerical approximations.

4. Time derivative of the Fourier coefficients of the patch boundary, with the natural
parameterization

In the present section, a relation between the time derivative of the Fourier coefficients for the
patch shape and the tangent derivative of the self-induced boundary velocities is established.

To this end, the choice of the boundary parameterization plays a crucial role. Here the arc
length s is used, having the intrinsic relation (4) between the Lagrangian time derivative of
s and the tangential derivative of the velocity. As a consequence, the time derivative of any
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Fourier coefficient (unless the one having a vanishing wave number) can be written in terms
of the self-induced velocities on the boundary only. In order to define the curvilinear abscissa
in a Lagrangian way, a point x0(0) on the vortex boundary is fixed as origin of the arc lengths,
at the initial time (t = 0). Such a curvilinear abscissa is indicated with s0 (see also Section 3).
At later times (t > 0), the origin x0(t) of the curvilinear abscissa s at the actual time t is
chosen on the Lagrangian image of the initial one x0(0), i.e., on the position at time t of the
particle which was in x0(0) at time 0.

When the length of ∂P at time t is defined by l(t) (with l(0) = l0) and the time dependent
k-th wave number by K(t) = 2kπ/l(t), the k-th Fourier coefficient for the patch boundary
may be written as:

ck(t) = 1

l(t)

∫ l(t )

0
ds x(s, t) exp [−i K(t) s ] (7)

and the position x(s, t) of the point on the curve ∂P , placed at a curvilinear abscissa s at time
t , is given by the Fourier series:

x(s, t) =
∑

k

ck(t) exp [ i K(t) s ] (8)

(hereafter, if the extremes of the sum are not indicated, they are −∞ and +∞, respectively).
It is worth noticing that, at least for k �= 0, the Fourier coefficients (7) do not depend on the
position of the arc length origin x0, because they may be written as:

ck = 1

k

1

2π i

∫ l

0
ds τ exp (−i K s ) .

On the contrary, c0 may be given as follows:

c0 = x0 − 1

l

∫ l

0
ds τ s,

i.e., as sum of the position x0 and of an intrinsic part. Obviously, the Fourier coefficients
depend on the choice of the point x0(0) along the initial curve ∂P (0).

By using the map s = s(s0, t), the k-th coefficient is rewritten in the following Lagrangian
form:

ck(t) = 1

l(t)

∫ l0

0
ds0 ∂s0s(s0, t)︸ ︷︷ ︸

Jacobian of the
transformation

x[s(s0, t), t]︸ ︷︷ ︸
Lagrangian

position

exp [−i K(t) s(s0, t) ]︸ ︷︷ ︸
exponential in

Lagrangian form

,

where the derivative ∂s0s is positive, due to the regularity of the Lagrangian map and the initial
condition s(s0, 0) = s0. By taking the time derivative of the k-th Fourier coefficient ck, written
in the above Lagrangian form, the following relation is obtained:

ċk = 1

l

∫ l

0
ds u e−i K s

︸ ︷︷ ︸
Uk

+ 1

l

∫ l

0
ds (v − i K w) x e−i K s

︸ ︷︷ ︸
Xk

. (9)
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Figure 3. For the vortex motion shown in Figure 1a, the functions w(s, t) = ṡ(s, t) − �s and
v(s, t) = ∂s ṡ(s, t) − � at the times 5 (dashed line) and 10 (solid) are drawn vs. s in (a) and (b), respectively.

As to the first term U k in the right-hand side of Equation (9), it is worth noticing that, for
k �= 0, an arbitrary function of time can be added to u, without modifying the value of U k. In
the second term Xk, the real functions w(s, t) and v(s, t) are defined as:

w = ṡ − �s, v = ∂sw, (10)

where � = l̇/ l is the relative elongation velocity of the patch boundary. With regard to the
functions w and v, it is worth noticing that the time derivative of l is given by:

l̇ =
∫ l0

0
ds0 ∂s0 ṡ =

∫ l

0
ds ∂s ṡ = ṡ(l), (11)

with ṡ(0) = 0, by the definition of the origin of the arc length s. It follows that w(0) = w(l) =
0, so w and, as a consequence, v are continuous periodic functions of s, despite the jump of
ṡ(s) in passing from s = l to s = 0. In Figure 3, the functions w and v are drawn vs. s at two
times of the contour dynamics simulation of Figure 1. Note also that the relative elongation
velocity � is just the mean value of the function ∂sṡ(s), so that v has a vanishing mean (its
Fourier coefficient v0 vanishes); see Figure 3b.

The whole right-hand side of Equation (9) may be rewritten in terms of the Fourier coeffi-
cients for the position x and the tangent derivative ∂xu. Actually, the term U k may be easily
rewritten for k = 0:

U 0 = ẋ0 − 1

l

∫ l

0
ds s ∂su, (12)

where ẋ0 is the velocity of x0. Otherwise, when k �= 0, it may be rewritten as:

U k = − i

K

1

l

∫ l

0
ds ∂su e−i K s . (13)

Finally, in the term Xk in Equation (9), the integral in w may be rewritten as one in v, by using
the identity:

x e−iKs ≡ ∂s

[
ck s − i

∑
m�=k

cm

M − K
ei (M−K) s

]
, (14)
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so Equation (4) leads to a form in which only the tangent velocity derivative appears. The
resulting spectral formulation for the patch dynamics will be presented in Section 7, under
simplifying assumptions on the patch shape, at the present time. In particular, the relation
between vortex shape and tangent derivative of the self-induced velocity will be established
through the following coefficients:

ek,m = 1

l

∫ l

0
ds

e−i K s

(x − α)m
, (15)

α being a suitable, fixed point within the vortex. It will be shown that only the coefficients
(15) for m = 1 are needed, the other coefficients (ek,m for m > 1) being deduced from the
ones ek,1, via suitable recurrence formulae. However, also these coefficients are functions of
the time, through the length l, the position x and the arc length s. So, they must be integrated
in time, together with the Fourier coefficients (7) of the patch shape. To this end, the time
derivative of the coefficient em,1 is evaluated as:

ėm,1 = 1

l

∫ l

0
ds

e−i M s

x − α

(
v − i M w − u

x − α

)
, (16)

which will be discussed in Section 7.
The importance of the tangent derivative of the self-induced velocity on the patch boundary

has been established, both from a local point of view (time derivative of tangent unit vector and
curvature, see Section 3) and from a global one (time derivative of the Fourier coefficients for
the patch shape). An easy and useful form of such a derivative is deduced in the next section.

5. Derivative of the velocity along the vortex boundary

The velocity field induced by a patch of unit vorticity is considered in the contour dynamics
form (1), which holds throughout the plane, including the patch boundary. In the present
section, the derivative with respect to the curvilinear abscissa s of the self-induced velocity
u(s) = u[x(s)] on the patch boundary is considered.

In a point x on ∂P , in which the curve is sufficiently smooth,1 the derivative of the velocity
(1) with respect to s is given by:

∂su [x(s)] = − 1

2π

∫
−

∂P
dy

x(s) − y

|x(s) − y|2 · τ (s), (17)

where the Cauchy principal value of the integral is considered and the dot indicates a scalar
product. By introducing the function φ = 1/τ 2, Equation (17) is rewritten in the following
complex form:

∂xu(x) = − i

2

[
1

2π i

∫
−

∂P
dy

φ(y)

x − y
+ 1

2
φ(x)

]
= − i

2
V (x). (18)

The function V (x) in the square brackets can be evaluated by standard tools of complex
analysis, if the analytical continuation of the function φ is known in a suitable portion of
the complex plane. A useful form of that term is obtained by considering the closed curve2

1A proof (by the author) for a curve ∂P having continuous third derivative is also available, on request.
2The set ∂Pr (x) may be defined also as ∂P , unless a small circular neighbourhood Br(x) of the point x of radius
r . Here, B ′

r (x) indicates the complementary set of Br(x).
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∂Pr(x), composed by joining ∂P ∩ B ′
r (x) and the half circle ∂B−

r (x), internal to the patch.
By using this curve, V may be rewritten as:

V (x) = 1

2π i
lim

r → 0+

∫
∂Pr (x)

dy
φ(y)

x − y
. (19)

A few sample cases, in which the function V (x) is evaluated analytically, are discussed in the
next section.

The result (18) is not surprising in view of Saffman’s analysis [10]. As mentioned in
Section 1, Saffman found a relation between self-induced velocities of the patch and the
Schwarz function of its boundary, at least for “nearly circular” patches. This constraint on the
shape is due to the use of Laurent expansions for the Schwarz function and for a conformal
map between patch and unit circle, which are assumed possible on the vortex boundary. The
connection between Saffman’s analysis and the present one lies in the following relation:

φ = τ

τ
= ∂xx = ∂x�, (20)

which states that the function φ is just the tangent derivative of the Schwarz function � of the
vortex boundary. In author’s opinion, the present rereading of Saffman’s analysis extends it to
patches of arbitrary shape. Moreover, also for the “nearly circular” patches considered below,
the current approach leads to an improvement, by relating in a direct manner self-induced
velocities and moments of a patch. This clears the way for a new kind of moment model,
working with “nearly circular” vortices, which overcomes the difficulties due to self-induced
effects, without assuming elliptical shapes.

Consider a particular class of vortices, having the function φ which can be written as a
Laurent series in an annular region with center in a point α (within the vortex) and including
the vortex boundary ∂P . A patch of this kind will be defined as “nearly circular” hereafter. In
this case, the relation between vortex shape (φ) and tangent derivative of the velocity (∂xu) is
thoroughly clarified by considering that the function V (18) may be decomposed as:

V = φ − ψ, (21)

where the function ψ is defined as follows:

ψ(x) = − 1

2π i

∫
−

∂P
dy

φ(y)

x − y
+ 1

2
φ(x). (22)

If the function φ can written as a Laurent series on ∂P , the corresponding expansion in a
power series of x − α of the function ψ follows from its definition (22). As a matter of fact,
by considering a term of the kind φ ∼ (x − α)k, with k positive, in the Laurent series for φ,
the corresponding term in the expansion for ψ is given by:

ψ(x) ∼ − 1

2π i
(x − α)k

∫
−

∂P

dy

x − y
+ 1

2
(x − α)k ∼ φ(x),

i.e., the coefficients of the term in (x − α)k in the power series for φ and ψ are equal. On the
contrary, any term with k negative in the Laurent series for φ gives a vanishing contribution
to the function ψ . To show this fact, the term φ(x) ∼ (x − α)−k′

for k′ positive of the Laurent
series for the function φ is considered. By using the identity:

1

(y − α)k′
(x − y)

≡ 1

(x − α)k′

(
1

x − y
+ 1

y − α

)
+

+ b2

(y − α)2
+ . . . + bk′

(y − α)k′ ,
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Figure 4. Sample of vortex dynamics for a patch of kind (28), with n = 2 and ε = 0·2: in (a) the patch geometries
at times 0 (dotted line), 5 (dashed) and 10 (solid) are shown (the crosses indicate the positions of the point x0,
origin of the arc lengths), while in (b) the logarithm of the modulus of the Laurent coefficients ak (24) at times 0
(squares), 5 (circles) and 10 (crosses) is drawn vs. k.

where the quantities bp for p = 2, 3, . . ., k′ do not depend on y, the corresponding contribution
to the function ψ results:

ψ(x) ∼ − 1

2π i

1

(x − α)k′

( ∫
−

∂P

dy

x − y
+

∫
∂P

dy

y − α

)
+ 1

2

1

(x − α)k′ = 0.

In this way, from Equation (21), the following series expansion for the velocity derivative
is obtained:

∂xu(x) = − i

2

+∞∑
k=2

ak

(x − α)k
= − 1

2π i

+∞∑
k=0

(k + 1)Mk

(x − α)k+2
, (23)

where the k-th Laurent coefficient of the function φ is given by:

ak = 1

2π i

∫
∂P

dx (x − α)k−1 φ(x) = −k − 1

π
Mk−2 (24)

and Mk is the k-th moment of the patch [2] with respect to the point α:

Mk =
∫
P

dA(x)(x − α)k = i

2

1

k + 1

∫
∂P

dx (x − α)k+1φ(x).

Equation (23) shows that the tangent derivative of the conjugate of the velocity is given by
the singular part (times −i/2) of the Laurent series for φ or, through the relation (24), by a
moment expansion. Moreover, it holds on ∂P and outside it, but not within that curve, the
derivative of u not being continuous across the patch boundary. Finally, by assuming that at
infinity the fluid is at rest, first and last sides in Equation (23) may be integrated, to obtain:

u(x) = 1

2π i

+∞∑
k=0

Mk

(x − α)k+1
, (25)

which holds on ∂P and outside it. From the above relation, a direct connection between
boundary velocities and moments is established, showing also the considerable simplicity
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Figure 5. In (a) are drawn the tangential (squares) and normal (circles) components of the tangent derivative ∂xu

vs. the arc length s, for the flow in Figure 4 at time 5. The components are evaluated numerically (solid line),
through the contour-dynamics velocity (1), and analytically (symbols), by using the series (23) with 120 terms. In
(b) the logarithm of the difference between numerical and analytical tangent derivatives, at times 0 (dotted line), 5
(dashed) and 10 (solid), is drawn vs. s.

of such patches. Equation (25) is just the starting point to build a moment model for nearly
circular patches, with exact self-induced effects. This issue is actually under investigation.

An example of the calculation of the coefficients (24) is given in Figure 4, which shows
the differences in the convergence rates of the series (23) at three times, during the motion
of a given, nearly circular patch. A comparison between the tangent derivative of the velocity
given by a numerical evaluation (with a fourth-order centered scheme) of the contour dynam-
ics velocity (1) and by the series (23) is carried out in Figure 5. Even if the effects of each
source of numerical errors (curve interpolation, discrete derivatives and integrals) cannot be
easily understood, a satisfactory agreement between the two tangent derivatives appears to be
reached.

6. Sample cases

In this section few sample cases, in which the limit (19) may be analytically evaluated, are
briefly discussed. The function φ is found everywhere in the complex plane and its singu-
larities lead to the estimate of the above limit, through the Cauchy or the residue theorems.
The aim of the present calculations is the study of the singularities of the function φ, for
rather non-trivial patch shapes. This analysis must be understood as a preliminary step in
order to investigate, in a future work, the time evolution of such singularities. For the reader’s
convenience, technical details are summarized in Appendix A.

6.1. THE ELLIPTICAL PATCH

The unitary vorticity is spread on an ellipse, having semi-axes of lengths a (along the real axis
x) and b (along the imaginary axis y), with a > b. The aspect ratio λ = a/b will be also used.
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The boundary of the vortex is defined as x(θ) = a cos θ + ib sin θ , where θ runs from 0 to 2π .
It follows that:

ei θ = z = x + √
x2 − c2

a + b
= 1

a
(x + i λ y), (26)

where c = √
a2 − b2 is one half focal length. The relation (26) maps the patch boundary in

the unit circle ∂C. The function φ is given as:

φ = γ 2z2 − 1

z2 − γ 2
= 1

λ2 − 1

[
(λ2 + 1) − 2λ

x√
x2 − c2

]
, (27)

in the transformed z-plane and in the physical one, with γ 2 = (λ−1)/(λ+1) < 1. In the first
plane, φ turns out to be singular on the two poles ±γ , while in the second φ is discontinuous
on the segment joining the two foci of the ellipse, which are branch points for the square root.
As shown in Equation (A1) of the Appendix A, the tangent derivative of the boundary velocity
follows, through Equation (19), as:

∂xu = 2 i λ

λ + 1

1

(λ + 1)z2 − (λ − 1)
= i a b

x2 − c2 − x
√

x2 − c2
,

which may be also integrated, leading to the definition of u on the vortex boundary. Actually,
by considering that

∂zx = a

2λ

(λ + 1)z2 − (λ − 1)

z2
,

the z-derivative of the tangent velocity field is written as:

∂zu = i
a

λ + 1

1

z2
.

By accounting for the map (26), the integration in z of the above relation gives the boundary
velocity:

u(x) = i

λ + 1
(x + i λ y),

which is Kirchhoff’s solution.

6.2. A CLASS OF MULTIPOLAR PATCHES

As other sample cases, the tangent derivative of the velocity is analytically evaluated for a
contrived class of patches, each of them having a boundary defined in the following way:

x(θ) = ρ(θ) ei θ , with: ρ(θ) = (1 − ε cos nθ)1/n, (28)

where n is a positive integer, θ ∈ [0, 2π) and ε is a real parameter, with 0 < ε < 1, which
controls the deepness of the perturbation of the circular shape (ε = 0). Furthermore, related
quantities µ = [(1 − ε2)/(2ε)]1/n and δ = (ε/2)1/n are also used below.

By following the general approach described in Appendix 9, the boundary velocity for the
patch with n = 1 (which is nearly circular for any ε and α = −δ) is given by:

u(x) = 1

2π i

[
2 + ε2

2
π

1

x + δ
− πε

2

1

(x + δ)2

]
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where (2 + ε2)π/2 = M0 is just the area of the patch and −πε/2 = M1, while Mk = 0 for
any k ≥ 2, according to Equation (25). For n = 2, the boundary velocity follows as:

u(x) = 1

2πi

π

2

(
1

x − iδ
+ 1

x + iδ

)
, (29)

which is identical to the one due to a couple of point vortices having equal circulations (one
half of the patch circulation π ), placed on the two poles of the function φ (x = ± i δ),
inside the patch. Moreover, the patch is nearly circular for ε < 2/3 and α = 0. In this case
M2k′ = π(−1)k′

δ2k′
and M2k′+1 = 0 for k′ = 0, 1, 2, . . ., so that Equation (25) leads to:

u(x) = 1

2π i

+∞∑
k′=0

π(−1)k′
δ2k′

x2k′+1
,

which may also be obtained by considering the corresponding Laurent series for the velocity
(29).

The general case (n ≥ 3) is much more complicated: details3 about the calculations are
summarized in Appendix A, where the tangent derivative of the velocity is evaluated for an
arbitrary n; see Equation (A11). It appears convenient to work in the transformed plane z =
exp(i θ), where ∂P becomes the unit circle ∂C and the function φ exhibits n branch cuts
inside and n outside (up to the infinity) the curve ∂C. A comparison between analytical and
numerical tangent derivatives is shown in Figure 6 for the patches for n = 10 (first row) and
n = 11 (second row). The agreement appears to be satisfactory, at least in the limit of the
numerical approximations.

After having discussed a few sample cases, as applications of Equation (19) to patches
of simple shape, the use of the tangent velocity derivative for the dynamics of the Fourier
coefficients (7) will now be addressed.

7. Intrinsic spectral dynamics

A spectral method is used to investigate the vortex dynamics as the result of interactions
between different wave-number components, related in the simple Fourier way (8) to the patch
shape. As a matter of fact, even if contour dynamics remains the most appropriate and efficient
approach to simulate the motion numerically, its results do not have the same direct physical
meaning as the spectral ones.

In Section 4 it has been shown that the time derivative of the Fourier coefficients (7) can be
written in terms of the tangential derivative of the boundary velocity only. Once the relation
between ∂xu and the vortex shape has been discussed in Section 5, it becomes possible to
develop the intrinsic spectral formulation (see Equation (34), below), for an arbitrary shape
of the vortex. However, in order to close such a system of equations, the Fourier coefficients
of the tangent derivative of the velocity must be expressed in terms of the Fourier coefficients
of the patch shape (7). At this stage of the study, this is done only for nearly circular vortices.

The tangent derivative of the boundary velocity is written in terms of the following Fourier
series:

τ (s, t) ∂xu[x(s, t)] = ∂su(s, t) =
∑

k

dk(t) ei K s (30)

3A detailed report (by the author) is also available, on request.



64 G. Riccardi

Figure 6. In the first column the tangential (analytical: solid line, numerical: squares) and normal (analytical:
dashed line, numerical: circles) components of the derivative ∂su for a patch of kind (28) with ε = 0·8 are
drawn vs. s, while in the second column (b, d) the logarithm of the modulus of the difference between numerical
(N = 1000 in b, N = 1100 in d) and analytical derivatives is drawn vs. s. In the first row (a, b) n = 10 and in the
second one (c, d) n = 11. On each arc element, the derivatives are evaluated in σ = h/2 and, for the numerical
one, a fourth-order centered scheme with a step �σ = 10−3 is used.

where the k-th coefficient is given by:

dk(t) = 1

l

∫ l

0
ds τ (s, t) ∂xu[x(s, t)] e−i K s (31)

and, the patch boundary ∂P being a closed curve, d0 ≡ 0. From the representation (30), the
relative elongation velocity � = l̇/ l, which is also the mean value of the periodic function
∂sṡ, may be easily evaluated as follows:

� = 1

l

∫ l

0
ds ∂s ṡ = i

2

∑
p

P (cp d−p − cp d−p), (32)
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in which Equations (11) and (4) are also used. From Equations (4, 32) and the definition of
the function v (10), it is also deduced that the k-th Fourier coefficient, for k �= 0, of v is the
following:

vk = i

2

∑
p

P (cp dk−p − cp d−k−p), (33)

while v0 = 0. Note also that vk = v−k.4

By accounting for the relations (12, 13) and inserting the identity (14) into Xk, Equation (9)
leads to the following differential problem for the Fourier coefficients:



ċ0 = µ + i

2

∑
p, q

p �= 0

Q cp (cq d−p−q − cq dp−q)

ċk = i

2

[
K ck

∑
p, q

p �= q

P

P − Q
(cp d−q + cp d−q) +

+
∑
p, q

p �= k

P Q

P − K
cp (cq dk−p−q − cq d−k+p−q)

]
− i

d−k

K
,

(34)

where the case of k = 0 must be distinguished from the others. Note also that the right-hand
sides of all Equations (34) do not contain the coefficient c0, so that c0 depends on all the other
coefficients ck, but these latter ones do not depend on c0. Finally, in the first equation of the
system (34) µ is the following function of time:

µ = ẋ0 − i
∑
k �=0

dk

K
. (35)

As stated above, the time integration of the system (34) needs the Fourier coefficients (31)
of the tangent derivative of the velocity, given the corresponding coefficients for the patch
shape. For example, in the case of an elliptical patch, with axis ratio λ = a/b and angular
velocity of the contour ∂P given by  = λ/(λ + 1)2, the relation between those Fourier
coefficients may be written in the simple form:

dk = K

2

[
c−k − λ − 1

λ + 1
e−2 i θ(t) ck

]
.

where θ(t) = θ0+ t is the phase of the semi-axis a, at the numerator of λ. In the general case,
the link between the patch shape and the tangent derivative of the velocity is not so simple.
However, for a nearly circular patch, from the definition (31) of the k-th Fourier coefficient dk

and the series representation (23) of the tangent derivative of the velocity, the following form
of the coefficient dk is obtained:

dk = −K

2

∞∑
m=1

1

m
am+1 ek,m, (36)

4With regard to the primitive function w, it is worth noticing that the sum of its Fourier coefficients vanishes, from
the conditions w(0) = w(l) = 0. Its Fourier coefficients are given by:

wk = −i
vk

K
for k �= 0, while: w0 = i

∑
k �=0

vk

K
.
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Figure 7. For a patch of kind (28) with n = 2 and ε = 0·2, in (a) the logarithm of the modulus of the Fourier
coefficients ck is drawn vs. k at the initial time (squares) and at time 3, from the contour dynamics simulation
(crosses) and the present spectral approach (circles). The integration is carried out with a fourth-order Runge-Kutta
scheme with time step 0·01. Relative errors on the area A and on the second-order moment I are smaller than
3 × 10−8 and 6 × 10−8, respectively. In (b) the tangential (squares) and normal (circles) components of the
tangent derivative ∂xu are drawn vs. the arc length s; they are evaluated numerically (solid line), via the contour
dynamics velocity (1), and by the series (23), with 140 terms.

where am, for m ≥ 2, is the m-th coefficient (24) of the Laurent series of the function φ

and the definition (15) of ek,m has been used. The Laurent coefficients in Equation (36) are
evaluated by introducing the modified (for a translation of α) Fourier coefficient of the patch
shape c̃p, which is equal to cp for all p �= 0, while c̃0 = c0 − α. Moreover, it is also needed to
consider the Fourier coefficients c̃

(m+1)
k for the (m + 1)-th power of x − α, evaluated as:

c̃
(m+1)
k =

∑
p

c̃p c̃
(m)
k−p,

starting from the ones for m = 1. In terms of these coefficients, am is given as:

am = −
∑

p

p cp c̃
(m−1)
p .

The coefficients ek,m in Equation (36) are evaluated by integrating in time the evolution
equation for ek,1:

ėk,1 =
∑

p

(vp − i K wp) ek−p,1 + i
∑
p, q

q �= 0

P(K + P + Q)

Q
cp dq ek+p+q,1 + (37)

+µ
∑

p

P (K + P) cp ek+p,1,

which follows from Equation (16), by using the Fourier series (30) for the tangent derivative of
the velocity and the definition (35) of µ. Then, each remaining coefficient ek,m+1, for m ≥ 1,
is obtained through the recurrence formula:

ek,m+1 = − 1

m

∑
p

P (K + P) cp ek+p,m,
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Figure 8. As in Figure 7, with ε = 0·3. Relative errors on the area A and on the second order moment I are
smaller than 2 × 10−7 and 4 × 10−7, respectively. Note the lack of convergence of the series of ∂xu (b), which
induces the errors on the Fourier coefficients at time 3, shown in (a).

starting from the ones ek,1.
The spectral formulation is validated by a comparison with the numerical simulation of the

vortex motion carried out with the contour dynamics algorithm. Moreover, the same two first
integrals of the motion (the area and the second-order moment of the patch) are evaluated dur-
ing the time integration of the system (34, 37). The differences between their initial values and
the current ones are assumed as global measures of the accuracy of the numerical integration.
The area A of the patch is written in terms of the Fourier coefficients of its shape as:

A = π
∑

p

p cpcp,

while the second-order moment is written:

I = π

2
Re

[ ∑
q,r,p

(q + r − p) cqcrcpcq+r−p

]
.

As a sample of vortex dynamics which may be treated with the present approach, for a
patch of the kind (28) with n = 2 and ε sufficiently small, in Figure 7a the logarithm of the
modulus of the Fourier coefficients ck is drawn vs. k at the initial time and at time 3, from the
contour dynamics simulation and the present spectral method, with 51 Fourier coefficients. A
satisfactory agreement is obtained, even if the truncation of the series leads to growing errors
at later times. To verify the convergence of the series for the tangent derivative of the velocity
at the final time 3, in Figure 7b the tangential and normal components of ∂xu are drawn vs.
the arc length s, through a fourth-order numerical derivative of the contour dynamics velocity
(1) and by the series (23). It happens that the boundary deformations at that time are quite
small, so that the Laurent series for φ results still convergent. On the contrary, by repeating
the simulation for a larger ε, the convergence of that series at time 3 is lost (see Figure 8b)
and the present spectral approach does not work at later times.
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8. Concluding remarks and perspectives

The present paper deals with the motion of a two-dimensional, uniform vortex in an inviscid,
isochoric fluid, by looking at the time behaviour of intrinsic quantities related to its boundary,
such as tangent unit vector, curvature and Fourier coefficients for the vortex shape. In this
analysis, a relevant role is played by the tangent derivative of the velocity along the boundary.
It depends on the analytic continuation of the function φ = 1/τ 2 outside the boundary itself,
through a standard Cauchy integral. The present approach may be also viewed as extending a
classical one, based on the Schwarz function � of the vortex boundary, to any (smooth) vortex
shape.

A few sample cases have been investigated analytically, in order to show the feasibility of
the present formulation. In this regard, the study of the evolution in time of the singularities
(as branch cuts or poles) of φ will be the object of future work, by starting from the present
highly non-trivial analytical solutions.

For a class of nearly circular vortices, the function φ of which may be expanded in a
Laurent series on the boundary, it is also found that the tangent derivative of the velocity
is given by the singular part of such a series. An extremely simple and suggestive relation
between vortex shape and self-induced boundary velocities is obtained. Moreover, for such
vortices, the time evolution of the Fourier coefficients for the vortex shape may also be invest-
igated by a spectral approach, which holds until the boundary deformations remain sufficiently
small. In the author’s opinion, the present spectral approach does not replace that involving
contour dynamics. Nevertheless, it promises to be useful in order to study the interactions
between different wave numbers, due to the strongly nonlinear nature of the problem. This
point is one of the main issues of future investigations.

Unfortunately, in the general case, the relation between Fourier coefficients and tangent
derivative of the velocity cannot be handled so simply. A deeper analysis still seems to be
necessary. For example, by using the Fourier representation (8), the tangent derivative of the
velocity (18) may be evaluated in the plane of the new complex variable z = exp(i 2π s/l)

(note that ∂P maps onto the unit circle ∂C in the z-plane). As a matter of fact, if the vortex
boundary is approximated by:

x(z) �
+m2∑

k=−m1

ck zk,

for z ∈ ∂C and suitable positive integers m1,2, the limit (19) may be evaluated as:

V (z) � 1

2π i
lim

r → 0+

∫
∂Cr(z)

dζ ζm1−m2−1 pm1m2(ζ )

qm1m2(ζ ; z)
,

where the two following polynomials in ζ :

pm1m2
(ζ ) =

m1+m2∑
k=0

(m2 − k) cm2−k ζ k

qm1m2
(ζ ; z) =

m1+m2∑
l=0

cl−m1 ζ l − x(z) ζm1
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have been introduced. In this way, the tangent derivative of the velocity in the point x(z)

follows from the (numerical) solution in ζ of the (m1 + m2)-th degree algebraic equation:

qm1m2
(ζ ; z) = 0,

by the residue theorem. This approach appears still unsatisfactory, because the roots of the
above equation depend on z and, as a consequence, different equations must be solved for
different z on ∂C.

9. Appendix Technical details about the analytical evaluation of the tangent derivative
in sample cases

In the present appendix, details about the analytical evaluation of the function (19) for the
sample cases considered in Section 6 are summarized.

9.1. THE ELLIPTICAL PATCH

In the physical plane, the tangent derivative of the boundary velocity may be calculated by
applying the external residue theorem to the integral (19), with the definition (27) of the func-
tion φ. Accounting for the residual values Res(x) = −φ(x) and Res(∞) = (λ − 1)/(λ + 1),
one has:

V (x) = − [Res(x) + Res(∞)] = − 4λ

λ + 1

1

(λ + 1)z2 − (λ − 1)
. (A1)

On the contrary, by using the Cauchy theorem inside the vortex, the following definition of V

is obtained:

V (x) = − 2λ

π(λ2 − 1)

∫ +c

−c

dξ
ξ√

c2 − ξ 2

1

x − ξ
,

which is evaluated through the identity:∫ +c

−c

dξ
ξ√

c2 − ξ 2

1

x − ξ
≡ −

∫ +c

−c

dξ√
c2 − ξ 2︸ ︷︷ ︸
I1

+|x|2
∫ +c

−c

dξ√
c2 − ξ 2

1

(x − ξ)2 + y2︸ ︷︷ ︸
I2

+

− x

∫ +c

−c

dξ√
c2 − ξ 2

ξ

(x − ξ)2 + y2︸ ︷︷ ︸
I3

,

where the integrals in the right-hand side of the above equation are:

I1 = π, I2 = πλ

x2

λ2
+ λ2y2

, I3 = π
λ2 − 1

λ

x

x2

λ2
+ λ2y2

,

still leading to the result (A1).
In the transformed z-plane, the limit V (19) is evaluated in the following terms:

V (z) = − 1

2π i
lim

r→0+

∫
∂Cr (z)

dζ
γ 2ζ 2 − 1

ζ (ζ − z) (ζ − γ 2/z)
,
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with the internal residue theorem (Res(0) = −1/γ 2, Res(γ 2/z) = (γ 6 − z2)/[γ 2 (γ 2 − z2)])
or with the external one (Res(∞) = −γ 2, Res(z) = (γ 2z2 − 1)/(z2 − γ 2)), leading always
to the result (A1).

9.2. THE MULTIPOLAR PATCHES (28)

In the present section, the analytical evaluation of the limit (19) is carried out for a patch hav-
ing its boundary defined through Equation (28), for an arbitrary n. Some definitions simplify
the analysis below. The angle which parameterizes ∂P is called θ in the independent variables
(x: physical plane, z: transformed one) and τ in the dependent ones (y, ζ ). The patch shape
(28) is a periodic function of θ , with a period 2π/n, so it is convenient to introduce the angle
α = π/n. The n-th roots of the unit χk = exp(i �k) with �k = 2 k α for k = 0, 1, . . ., n − 1
are employed, also with the useful extensions �n = 2 n α = 2π and χn = χ 0.

First of all, in Equation (28) the map x = x(z) is inverted:

zn = 1

ε
(1 ± 2δn/2

√
µn − xn), (A2)

where the branch of the square root having argument in [0, π), has been used. As a con-
sequence, the choice of the sign in Equation (A2) depends on the phase of xn: the sign ”+”
holds for arg(x) ∈ (�k,�k + α), while the sign ”−” for arg(x) ∈ [

�k + α,�k+1
]
, where

the integer k runs from 0 to n − 1. Finally, among the n-th roots of zn, which follow from
Equation (A2), only the one for which arg(z) = arg(x) must be considered, as implied by
Equation (28).

As a second step, the function φ is evaluated in the z-plane, leading to the following
definition of the limit V (19):

V (z) = 1

ε π i
lim

r→0+

∫
∂Cr (z)

dζ

ζ 3

ε − ζ n

(ζ n − zn) (ζ n − �n)

n−1∑
h=0

[
x(z)

y(ζ )

]h

, (A3)

in which �n = 1/δn − zn and yn(�) = xn(z). The singular points of the function under the
integral in the right-hand side of Equation (A3) are the following: I ) the pole of order 3 in the
origin (ζ = 0); II ) for n ≥ 2, the branch points of the function y(ζ ); III ) the n-th roots of
zn, given by χkz for k = 0, 1, . . ., n − 1; and, finally, IV ) the n-th roots of �n, which are
outside ∂C. The branch points of the function y(ζ ) are located in χkp, χ kq for k = 0, 1, . . .,
n − 1, having defined the two positive constants p and q as the real and positive n-th roots of
the quantities:

pn = 1 − √
1 − ε2

ε
< 1, qn = 1 + √

1 − ε2

ε
> 1, (A4)

with p q = 1. However, the singularities of kind III for k ≥ 1 are only apparent, because
y(χkz) = χ kx(z) and, as a consequence, the sum 1+x/y+(x/y)2+. . .+(x/y)n−1 vanishes.
On the contrary, this latter sum holds n, for k = 0.

The function y, which gives the vortex shape in the transformed ζ -plane, may be written
as the following product:

y(ζ ) = δ ei m π/n

n−1∏
k=0

[χn−k (ζ − χ kp)]1/n [χn−k (χ kq − ζ )]1/n, (A5)
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Figure 9. In (a) the phase contributions (A7) along a direction χ = exp(i �) (one among χ0, χ1, . . ., χn−1)
due to the branch points χp and χq (A, first numbers in the sums), to the ones along −χ (B, second numbers,
present only for n even) and to the branch points along a couple of symmetrical directions (C, third numbers) are
evaluated. In particular, for n even, (n − 2)/2 of the latter contributions are present in the sum (A7), while, for n

odd, they are (n − 1)/2. In (b) and (c) there are the whole phases along χ for n even and odd, respectively. In the
latter case, a jump along the direction � + α is also present in the sum (A7).

where the relative integer m is even for n odd and odd for n even. Its argument, which must
be equal to arg(ζ ) when ζ ∈ ∂C, is evaluated by introducing the phases of the vectors joining
χkp and χkq with ζ :

αk = arg[χn−k(ζ − χkp)] ∈ [0, 2π)

βk = arg[χn−k(ζ − χkq)] ∈ [−π,+π)
(A6)

relative to the χ k direction, for k = 0, 1, . . ., n−1. Here, αk and βk belong to different ranges:
the first one runs from 0 (included) to 2π , i.e., it is the principal argument of χn−k(ζ − χ kp),
while, to obtain the same range of variation for the phase of χn−k(χ kq − ζ ) in Equation (A5),
the phase βk must run from −π (included) to +π . The two cuts, induced by the different
phase definitions, have opposite directions, so it becomes possible, via a particular choice of
the branches of the factors in Equation (A5), to obtain a phase for the whole function y(ζ )

which results continuous across the segment joining χkp with χkq. Being p < 1 and q > 1,
such a phase will be also continuous on the unit circle ∂C.

The phase of the function y may be written in terms of the arguments given in Equa-
tion (A6) and the following sum:

n−1∑
r=0

(αr + βr) (A7)

along each direction χk (for ζ = s exp(i τ), with τ = �k = 2kα and s > 0) is considered,
starting from the case in which n is even. From Figure 9a it is found that the phase (A7) is
nπ for 0 < s < p, (n + 1)π for p < s < q and τ = arg ζ = �−

k , (n − 1)π for τ = �+
k ,

(n+ 2)π for s > q and τ = �−
k , (n− 2)π for τ = �+

k ; see also Figure 9b. As a consequence,
by assuming m = −(n − 1) in Equation (A5), arg y(ζ ) is written for n even as:

arg y(ζ ) = −(n − 1) α + 1

n

n−1∑
r=0

(αr + βr) + 2 h α,
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where the integer h turns out to be equal to k, if τ ∈ [�k,�k+1), for k = 0, . . ., n − 1. In this
way, arg y(ζ ) along the direction χk (i.e., τ = �k) is �k for p < s < q, while it is given by
�k + α for 0 < s < p, τ = �+

k and for s > q, τ = �−
k , while it is �k − α for 0 < s < p,

τ = �−
k and for s > q, τ = �+

k .
For n odd, by using Figure 9a (without the contributions in B), the sum (A7) along each

direction χk (for ζ = s exp(i τ), s > 0 and τ = �k) is (n + 1)π for 0 < s < p and τ = �+
k ,

(n − 1)π for τ = �−
k , nπ for p < s < q, (n − 1)π for s > q and τ = �+

k , (n + 1)π for
τ = �−

k ; see also Figure 9c. As shown in that figure, for n odd, another phase discontinuity
takes place across each direction exp[i (�k + α)], for k = 0, 1, . . ., n − 1. Actually, the above
direction is aligned, for 0 ≤ k ≤ (n − 1)/2, with χ k+(n+1)/2 and, for (n + 1)/2 ≤ k ≤ n − 1,
with χk−(n−1)/2. The resulting sum (A7) on the line τ = �k + α may be evaluated starting
from Figure 9a, without considering the contributions in A (first numbers in the sums in the
figure). A jump from (n + 1)π for τ = (�k + α)− to (n − 1)π for τ = (�k + α)+ is found,
see also Figure 9c. It follows that arg y(ζ ), by choosing m = −2n in Equation (A5), may be
written as:

arg y(ζ ) = −π + 1

n

n−1∑
r=0

(αr + βr) + 2 h α,

where the integer h is fixed at 0 when τ ∈ [0, α), k when τ ∈ [�k − α,�k + α) for k = 1, 2,
. . . , n − 1 and n when τ ∈ [�n −α, 2π). In this way, arg y(ζ ) in the directions χ k behaves as
in the case of n even and the jumps along the directions �k + α disappear.

In the selected branch of the function y, the discontinuities outside the unit circle ∂C are
only along the directions χk, for |ζ | > q. When the internal residue theorem is applied to
evaluate the limit (A3), the integration along these directions leads to the following quantity:

1

ε π i

n−1∑
m=0

xm

∫ +∞

q

dξ

ξ 3

ε − ξn

(ξn − zn) (ξn − �n)

1

|y(ξ)|m ×

×
n−1∑
k=0

e−2 i �k
[

e−i (�k+α) m − e−i (�k−α) m
]
,

(A8)

where the last sum, which depends on the phase jumps of the function y(ζ ), does not vanish
if and only if m = n − 2, when it holds −2 i n sin[(n − 2)π/n].

To evaluate the integral in the sum (A8) for m = n − 2, the following quantity has to be
considered:

I(γ, σ ; s, v,w) =
∫ 1

0
dξ

ξγ (s − ξ)−σ (1 − ξ)−σ

ξ 2 − 2vwξ + w2
, (A9)

γ , σ , s, v and w being suitable real numbers. The case γ > 0, 0 < σ < 1, |v| < 1 for any
w and |v| = 1 only for |w| > 1 is considered below, in such a way that the second-degree
polynomial in the denominator in Equation (A9) is positive for any ξ ∈ [0, 1]. Moreover,
the integral (A9) is evaluated numerically with a second-order scheme, after a preliminary
integration by parts, to avoid the singularity in ξ = 1 of the factor (1 − ξ)−σ . In terms of the
following quantities:
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j
(n)
1 (θ) = Re(zn) = cos nθ,

j
(n)
2 (θ) = Re(�n)

|�n| = 2 − ε cos nθ

(4 + ε2 − 4ε cos nθ)1/2
,

j
(n)

3 (θ) = qn

|�n| = 1 + √
1 − ε2

(4 + ε2 − 4ε cos nθ)1/2
,

the values of the integral (A9) which are needed are given by:

f
(n)
1 (θ) = I

[
2n − 2

n
,
n − 2

n
; qn

pn
, j

(n)
1 (θ), qn

]
,

f
(n)
2 (θ) = I

[
3n − 2

n
,
n − 2

n
; qn

pn
, j

(n)
1 (θ), qn

]
,

f
(n)

3 (θ) = I

[
2n − 2

n
,
n − 2

n
; qn

pn
, j

(n)

2 (θ), j
(n)

3 (θ)

]
,

f
(n)

4 (θ) = I

[
3n − 2

n
,
n − 2

n
; qn

pn
, j

(n)

2 (θ), j
(n)

3 (θ)

]
.

(A10)

Regarding the evaluation of the residuals outside the unit circle ∂C, and fixing a root �

of �n = 1/δn − zn, the sum of the residuals in the points χk � leads to the definition of the
integers l(k), belonging to the set {0, 1, . . . , n − 1}, such that y(χk �) = χ l(k) x(z). As a
consequence, the following useful result is obtained:

1

n

n−1∑
k=0

χn−2
k

n−1∑
m=1

χm
l(k) = 1

χ2
k�

,

where y(χk� �) = x(z). The sum of the residuals is evaluated through the above equation,
so, by using also the functions (A10), the limit (A3) follows:

V (z) = 1

δn

1

zn − �n

{
ε − �n

χ 2
k� �n+2 − ε − zn

zn+2
+

+ sin[(n − 2) α] xn−2(z)

π δn−2 q2

[
ε − zn

zn

(
qn zn f

(n)
1 (θ) − f

(n)
2 (θ)

) + (A11)

+ �n − ε

�n

(
δn qn zn

zn − δn
f

(n)

3 (θ) − f
(n)

4 (θ)

)]}
,

for an arbitrary n.
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